
Computer Vision Laboratory Prof. Luc Van Gool

Author: Supervisor:

Martin Renold Till Quack

May 2008

Master’s Thesis

Detecting and Reading Text in
Natural Scenes

Abstract

This thesis describes a system for detecting text in natural scenes. A Viola-
Jones style classifier cascade is used, and new features specifically aimed at text
are evaluated. The detected regions are clustered and cleaned up for optical
character recognition.

Additionally it is shown how the same approach can be used to locate two
dimensional barcodes (like QR and Datamatrix codes) without relying on their
finder pattern.

Contents

Abstract i

1 Introduction 1
1.1 Previous Work . 2
1.2 Organization . 2

2 The Viola Jones Approach for Object Detection 3
2.1 The Features . 4

2.1.1 Integral Images . 4
2.2 Discrete Adaboost . 5
2.3 Cascade Training . 6
2.4 Adaboost Variants . 7

2.4.1 Real Adaboost . 7
2.4.2 Asymmetric Extensions 7
2.4.3 Others . 7

3 Detecting Text 9
3.1 The Dataset . 9
3.2 Features . 10

3.2.1 Intensity based Features 10
3.2.2 Variance based Features 11
3.2.3 Edge based Features . 11
3.2.4 Scanline based Features 13

3.3 Adaboost Training . 13
3.3.1 Asymmetric Boosting . 13

3.4 Detector Setup . 14
3.5 Evaluation Method . 14

3.5.1 False Positive Rate . 14
3.5.2 Strict Hit Rate . 14
3.5.3 Permissive Hit Rate . 15

3.6 Results . 15

4 Reading Text 20
4.1 Combining the Raw Detections 20
4.2 Preprocessing . 20

4.2.1 Binarization . 22
4.3 Evaluation . 22
4.4 Results . 23

iii

5 Detecting Codes 26
5.1 The Dataset . 26
5.2 Boosting Trees . 27
5.3 Training and Detector Setup . 27
5.4 Combining and Preprocessing . 28
5.5 Results . 28

6 Discussion 32
6.1 Feature Pool Size . 32
6.2 Performance of the Features . 32

6.2.1 Features based on Gradient Orientation 32
6.3 Assymmetric Boosting . 34
6.4 Boosting Trees . 34
6.5 Quantization effects . 34
6.6 Scaling the Edge based Features 37
6.7 Different Dataset . 39

7 Conclusions and Outlook 40
7.1 Further Work . 40

A Using the Codebase 43
A.1 Creating a Dataset . 43
A.2 Training the Cascade . 44
A.3 Running the Detector . 44
A.4 Datasets . 45

B More Text Detection Results 46

iv

List of Figures

1.1 Those artistic fonts used for advertising are challenging to read. . 1
1.2 Consumer oriented applications of QR and Datamatrix codes. . . 1

2.1 The first and second feature selected by Adaboost. 3
2.2 The Integral Image. 5

3.1 Labeled text split into overlapping 2:1 rectangles. 9
3.2 Block based features are parameterized by their location and size. 10
3.3 The intensity based features used. 10
3.4 Counting the number of vertical edges inside the horizontal stripe. 12
3.5 Parameterization of the scanlines. 13
3.6 ROC curves for six identical trainings. 16
3.7 Complexity of the cascade. 17
3.8 A typical raw detection result. 17
3.9 Raw detection result with slight rotation. 18
3.10 Raw detection result with gradient and blur. 18
3.11 Raw detection results on a bookcover. 19

4.1 Two hard text areas from the ICDAR trial test set. 21
4.2 Some typical false positives. 21
4.3 Different thresholding methods. 22
4.4 Comparing different OCR engines. 23
4.5 A sample image from the low quality dataset. 24
4.6 Results with different binarization methods. 25
4.7 Comparing different methods using FRE. 25

5.1 QR code labeling and windows for Adaboost. 26
5.2 ROC curves for the last few stages. 29
5.3 Complexity of the cascade. 29
5.4 QR detection result (newspaper). 30
5.5 QR detection result (building). 30
5.6 QR detection result (blur). 30
5.7 QR detection result (tree). 31

6.1 Rectangluar regions in the restricted feature pool. 32
6.2 ROC curves of the detector when using different feature types. . 33
6.3 Complexity of the classifier when using different feature types. . 33
6.4 ROC and complexity curves with and without asymmetric bossting. 35
6.5 ROC and complexity curves for boostin trees. 36

v

6.6 The image and feature locations choosen for the scale test. 36
6.7 The responses of an intensity-based feature at different window

scales. 37
6.8 The scale responses of the first feature selected by Adaboost. . . 38
6.9 The responses of a feature counting the vertical edges inside a

horizontal stripe. 38

vi

List of Tables

2.1 Notation for calculating rectangular blocks. 4

3.1 Per-stage results of the trained classifier (testing set). 15

4.1 Word Evaluation Measures . 23

5.1 Comparing the text and the code detector. 28
5.2 Performance of QR code localization. 31

A.1 The three central scripts. 43

vii

Chapter 1

Introduction

As digital imaging devices are becoming cheaper and widely available, and as
collections of images accessible through the Internet are getting enormous, there
is a growing demand to analyze and process this type of data in an efficient way.
A typical task is to locate certain objects within the image, for example faces
in order to identify persons.

The task addressed in this work is to find and read all the text within the
image. This is challenging because the content and quality of typical images are
rather unpredictable, in contrast to text from a scanned document.

Applications include searching for text within an image database, extracting
Internet URLs and loading them into a mobile web browser, or reading signs to
help visually impaired persons.

Text that occurs in natural scenes is made to be read by humans. Sometimes
it is distorted from the clean appearance in a playful way towards the border of
readability (Figure 1.1). Since the human vision system is tolerant and can use
lots of context information, a computer program doing the same has to solve a
rather difficult task.

Figure 1.1: Those artistic fonts used for advertising are challenging to read.

Figure 1.2: Consumer oriented applications of QR (left) and Datamatrix (right)
codes.

While already popular for industrial tracking, two dimensional codes, in
particular QR codes (Figure 1.2), are becoming increasingly popular as reader

1

software for mobile phones becomes available. Their well specified appearance
and the error correction information make them much easier to be read elec-
tronically. New applications include advertising, additional product information
and business cards. Often the information encoded is just an Internet URL. The
task of locating such codes is also addressed in this work using the same system
as for locating text.

1.1 Previous Work

In 2001 Viola and Jones[1] have proposed a very successful system for frontal face
detection (but not limited to this task) which quickly became popular. Their
approach is described in chapter 2 and forms the basis for the text detection
framework developed during this thesis.

An overview of early text information extraction systems (until about 2003)
can be found in [4]. More recently Chen and Yuille[2] reported success using the
Viola Jones approach for detecting text instead of faces. They made the second
place in the ICDAR 2005 Text Locating Competition[3] with their system (pre-
cision 0.60, recall 0.60) while running over forty times faster than the winning
entry (precision 0.62, recall 0.67). A further related work is the master thesis of
Ching-Tung Wu[5] where a similar approach was used as part of an email spam
classification system. The variant proposed in this thesis is described in detail
in chapter 3.

After locating the text, it has to be read. While good programs for optical
character recognition (OCR) exist, they are made for scanned-quality documents
with a high resolution and constant illumination and are easily confused by non-
text objects nearby.

1.2 Organization

The remainder of this report is structured as follows: in chapter 2 the Viola
Jones approach for face detection is summarized. In chapter 3 the text detection
system is presented in detail. In chapter 4 it is described how the raw detections
are prepared for OCR. In chapter 5 the modifications for QR code detection are
presented. In chapter 6 the performance of the features and other details of the
detection system are discussed.

2

Chapter 2

The Viola Jones Approach
for Object Detection

In their influential paper in 2001 Viola and Jones[1] described an efficient and
accurate system for frontal face detection. Due to the extraordinary performance
of this approach, many researchers have since proposed modifications applied it
to different problems.

Their system uses a classifier to decide whether a square region of the image
contains a face or not. This classifier is run at every possible location and scale.
The key ideas to make this approach perform well are:

• The features are based on rectangular blocks and can be computed using
integral images at any scale in constant time.

• A simple threshold is used to turn a feature into a weak classifier.

• Adaboost selects a subset of all weak classifiers and combines them into a
strong classifier.

• A cascade of increasingly complex strong classifiers allows to reject easy
background early without much computation.

Figure 2.1: The first and second feature selected by Adaboost (from [1] page
11). The features measure the intensity difference between the dark and the
bright regions.

3

Table 2.1: Notation for calculating rectangular blocks.
I(x, y) the greyscale intensity values of the image
R an arbitrary rectangular region, usually inside the de-

tection window
|R| the number of pixels inside R
W the rectangular region of the detection window

m(R) the mean intensity within R
s(R) the standard deviation of the intensity within R

2.1 The Features

The features are based on the intensity difference between two or more rectan-
gular regions as in Figure 2.1. They are contrast-normalized with respect to the
window.

The following properties from Table 2.1 are used:

m(R) =
1
|R|

∑
(x,y)∈R

I(x, y) (2.1)

s(R) =

√√√√√ 1
|R|

 ∑
(x,y)∈R

I(x, y)2

−m(R)2 (2.2)

A contrast-normalized feature f using the two regions R1 and R2 is defined
as

f =
m(R1)−m(R2)

s(W)
. (2.3)

Those features are parametrized by their position and size of the rectangles
R1 and R2 inside the detection window. Viola and Jones have used features with
two and three adjacent rectangles to detect edges an lines as those in Figure 2.1,
but also a diagonal checkerboard pattern with four rectangles.

2.1.1 Integral Images

Once created, an integral image (defined in Figure 2.2) allows to calculate the
sum of a rectangular region very efficiently with only four lookups. The integral
image of the image intensities can be used to evaluate the mean in equation 2.1.

The really useful part is that contrast-normalization can also be done with
an integral image. The square intensity integral image allows to calculate the
sum in equation 2.2 the same way with only four lookups. Since s(W) only
depends on the window, it can be evaluated once and used by all features. This
makes the whole calculation of a feature f very fast.

4

Figure 2.2: At the point A the integral image stores the sum of all pixels to the
upper left of A. The sum of pixels in an arbitrary rectangle can be calculated
as D - B - C + A.

2.2 Discrete Adaboost

Discrete Adaboost1 was introduced in 1995 by Freund and Schapire[7]. The idea
of boosting is to combine several weak classifiers ht(x) to a strong classifier H(x).
The weak classifiers are only required to be slightly better than chance.

In this setting the input x represents the data in a detection window, and
the classifiers have binary {−1,+1} output. The Adaboost strong classifier has
the form

H(x) = sign(
T∑
t=1

αtht(x)) (2.4)

where T is the number of weak classifiers being used, and αt are coefficients
chosen by Adaboost.

During training Adaboost assigns a weight wti to each training sample i
for boosting round t and calls the weak learning algorithm to find the best
weak classifier under the given weights. Then αt and the new weights wt+1

i are
calculated. This process is repeated until T boosting rounds are done. Since
none of the calculations depend on T , any other stopping criterion (like a target
error rate) can be used. The complete algorithm (following the wording in [9]) is:

• Given: labeled training samples (x1, y1), . . . , (xn, yn) with yi ∈ {−1,+1}

• Initialize weights w1
i = 1

N for i = 1 . . . N

• For t = 1 . . . T

1. Use the weak learning algorithm to find the classifier ht(x) ∈ {−1,+1}
that minimizes the error εt =

∑
i:ht(xi)6=yi

wti

2. Calculate: αt = 1
2 ln(1−εt

εt
)

3. Update weights: wt+1
i = wtiexp(−yiαtht(xi))

4. Normalize weights such that
∑
i w

t+1
i = 1

• The strong classifier is H(x) = sign(
∑T
t=1 αtht(x))

1Sometimes simply called Adaboost. The term discrete was introduced later to distinguish
it from more recent Adaboost variants that use real-valued output for the weak classifiers.

5

Advantages of Discrete Adaboost are:

• empirically shown to be somewhat resistant to overfitting [8]
• can still improve after all data is classified correctly
• fast training process
• can be used for feature selection
• easy to implement

Disadvantages are:

• will overfit in the presence of label noise [13]
• greedy learning process can give suboptimal solutions

2.3 Cascade Training

With a cascade structure, the false positives F and the detection rate D of the
entire cascade are the products of the false positives fi and detection rate di of
the individual stages:

F =
N∏
i=1

fi (2.5)

D =
N∏
i=1

di (2.6)

To reach some final training goal of the whole cascade (choosen by the user),
a training goal for each stage can be calculated, assuming that all stages will
have about equal performance. This typically leads to a target detection rate of
0.99 and a false positive rate of 0.30 for each stage, depending on the number
of stages.

Adaboost will only try to minimize the missclassification error. However by
adding a constant value to the sum in equation 2.4 it is possible to increase the
hit rate at the expense of the false positives. Viola and Jones have proposed the
following method to train a stage:

1. Let Adaboost choose and add the next weak classifier.

2. Tune the threshold of the current strong classifier2 such that the desired
detection rate is reached on the validation set.

3. If the tuned classifier does not reach the target false positive rate on the
validation set, go back to 1.

In other words, features are added until the training goal is reached. The stage
goal is the stopping criterion for Adaboost training.

2Since the output of the weak classifiers is binary there is only a discrete number of possible
distinctive tunings. In the early stages with few weak classifiers the desired detection rate
cannot be reached precisely.

6

2.4 Adaboost Variants

Since the original Adaboost publication[7], many improved boosting algorithms
have been proposed. Most of those works compare to the results reported by
Viola and Jones[1] on the face detection problem. Some of the most important
variants are summarized below. There are at least ten more variants that are
not listed here.

2.4.1 Real Adaboost

Real Adaboost, originally called as Adaboost with confidence-rated predictions,
was proposed Schapire and Singer [12]. The main difference to Discrete Ad-
aboost is that the weak learner gives a real-valued instead of {+1,−1} output.

The task of the weak learner is only to partition data into several bins. The
confidence-rated value is calculated from the sample distribution within the bin.
Traditionally the weak classifier uses a simple threshold on one feature resulting
in two bins, but other variants are possible. For example in [14], 64 bins were
used on a single feature, holding the confidence-rated values in a lookup-table.

With this, the learning algorithm of the weak classifier has to be modified
to minimize

Zt =
∑
i

wiexp(−yih(xi)). (2.7)

The parameters αt are no longer used; they are folded into the weak classi-
fiers.

2.4.2 Asymmetric Extensions

The original Discrete Adaboost algorithm tries to minimize the number of miss-
classifications (this is called the symmetric error). However in the cascade struc-
ture a false positive (background classified as face) can still be rejected by the
later stages, while a false negative (face classified as background) at any stage is
a final decision that degrades the overall performance (equation 2.6). In other
words the cost of the classification error is not symmetric.

Viola and Jones have initially solved this problem in [1] by simply tuning
the final threshold for each stage. However the weak learner is still aiming for
a symmetric goal, and the weak classifiers are selected accordingly.

In [10] they proposed a solution to this, based on Real Adaboost. They have
modified the weights of the training samples before each boosting round to force
more attention to the positive samples. This did both simplify their classifier
and made it more accurate.

A more recent approach to asymmetric boosting, based on the statistical
interpretation of boosting, was proposed Shirazi and Vasconcelos [11]. The
authors derived a modified boosting algorithm that is equivalent to Adaboost
in the symmetric case.

2.4.3 Others

Also worth mentioning is Gentle Adaboost[15] which was shown to be effective
on the face detection problem in [16]. It seems to be more tolerant to noisy
data, in particular if there are wrong labels in the training set.

7

Another possible modification (not strictly to Adaboost) is exchanging the
weak classifier. Traditionally a single threshold on a feature is used (boosting
stumps) but boosting decision trees can also be effective. Other weak classifiers
include Linear Discriminant Analysis (LDA) or lookup-tables as weak classifiers.

8

Chapter 3

Detecting Text

This chapter describes the combination of methods which lead to the best text
detection results in our experiments. How much the individual choices con-
tribute to the performance is discussed in chapter 6.

3.1 The Dataset

We collected a text dataset consisting of pictures taken from street signs and
advertisments in the region of Zürich. There are also some book pages, news-
papers and a few urls and numbers displayed on an LCD screen. Additionally
about a quarter of the text comes from signs downloaded from Flickr1. Only
text with roman letters was considered.

Readable text lines were labeled with rectangles, including some space above
and below the letters. As in [2] those labels were split into detection windows
with width-to-height ratio 2:1 and then used as positive samples for Adaboost.
In total there are 599 rectangles labeled in 209 images split into 3423 detection
windows.

Figure 3.1: Labeled text split into overlapping 2:1 rectangles.

The background regions were also labeled manually. This allowed to leave
some text unlabeled, in particular small, unreadable, rotated and heavily dis-
torted text, as well as artistic fonts and graffiti. The training process usually
stops because it cannot find enough false positives to train on. Thus additional

1www.flickr.com

9

city scene images were downloaded from Flickr, prefering those with many false
positives detected. In total background regions from 632 images were used.

The images were split randomly into three sets of equal size for training,
validation and testing.

3.2 Features

Text detection differs from the face detection problem solved in [1] in several
aspects. First, the features should be invariant to color inversion, because both
white and black text should be detected equally well. Second, while frontal
face detection can use well-located features of the face (like the eye region) the
position and shape of letters are not fixed. Thus statistical properties (or the
texture) are more important.

Figure 3.2: Block based features are parameterized by their location and size.
All possible rectangles within this 10x10 raster are considered during training.

Most features calculate some property within a subrectangle of the window.
The geometry of this block is parameterized as in Figure 3.2. This is the main
source of feature diversity.

3.2.1 Intensity based Features

Figure 3.3: The intensity based features used. The absolute intensity difference
between the black and the white region is calculated. Left: comparing block to
window intensity; right: haar-like edge features

The horizontal and vertical edge features are similar to those used by Viola
and Jones in [1]. In contrast to [1] the absolute values were used in order to
detect black and white text equally well. The feature using the intensity of the
whole window is similar to the three-rectangle feature used in [1]. Its main use
(appart from adding diversity) is to check whether the regions above and below
the text line have a different color from the text.

10

Both features are contrast normalized with respect to the whole window, as
described in section 2.1.1. They are inherently scale invariant (except for the
quantization effects that are shared by all features and described in section 6.5).

3.2.2 Variance based Features

A simple feature is the standard deviation (or the variance) of the gray level
values of pixels inside a region. It can be calculated from the square integral
image. Regions with very low intensity variance are quite common (sky, uniform
surfaces) and rarely contain text. Two variance based features were used.

The first feature is simply the variance inside the whole window. Conve-
niently this value needs to be calculated anyway to contrast-normalize the in-
tensity based features.

The second feature calculates the ratio between the variance inside a sub-
rectangle and the variance of the whole window (continuing with the notation
from Table 2.1):

f =
s(R)
s(W)

. (3.1)

This has the effect of contrast normalization. The most obvious use of this
feature is to check if a subregion contains only bright or only dark pixels where
there should be text.

Note however that the variance does not increase with the number of edges;
in a binary image the variance is maximized when 50% of the pixels are black.
And the variance can change heavily when the image gets slightly blurred.

3.2.3 Edge based Features

On the original grayscale image I(x, y) edge detection is performed using the
Sobel operator, resulting in the gradient images Gx(x, y) and Gy(x, y):

Gx(x, y) = I(x, y) ∗ Sx(x, y) (3.2)
Gy(x, y) = I(x, y) ∗ Sy(x, y) (3.3)

with

Sx =
1
8

1 0 −1
2 0 −2
1 0 −1

 and Sy =
1
8

 1 2 1
0 0 0
−1 −2 −1

 . (3.4)

Only the absolute values |Gx(x, y)| and |Gy(x, y)| are considered. The idea
is to use the property that text has a certain minimum and maximum number
of edges. Those statistics are different for horizontal and vertical edges, and
also different depending on the position within the detection window (there is
usually a blank stripe above and below the text). The challenge to somehow
“count” the number of edges with just a few lookups in an integral image.

Let’s assume that the original image is a clean black-and-white binary image
(it may be slightly blurred). Consider only the vertical edges inside some block
R (Figure 3.4). Then the sum along a single horizontal pixel row

11

Figure 3.4: The values of |Gx(x, y)| of the same text at different resolutions.
We are interested in counting the number of vertical edges inside the horizontal
stripe region R, independent of the resolution.

g(R, y) =
∑
x∈Rx

|Gx(x, y)| (3.5)

is exactly the number of vertical edges crossing this row, no matter how
many pixels there are, no matter whether the image is slightly blurred or not,
and no matter whether the edges are perfectly vertical or not. When combining
all h pixel rows inside the w × h rectangle R to get a more robust feature, the
values of g(y) have to be averaged to still get an equivalent to the number of
edges:

ex(R) =
1
h

∑
(x,y)∈R

|Gx(x, y)| (3.6)

and equivalently for horizontal edges

ey(R) =
1
w

∑
(x,y)∈R

|Gy(x, y)|. (3.7)

Because the text will rarely be clean black on white, ex and ey depend on the
contrast of the text and the amount of noise in the window. Three normalization
methods were put into the feature pool for Adaboost to choose. The first is the
usual window contrast normalization (not solving the noise problem)

f1 =
fx(R)
s(W)

(3.8)

and, since contrast normalization within the block makes sense too, also

f2 =
fx(R)
s(R)

. (3.9)

To solve the noise problem a third normalization comparing to the amount of
edges within the whole detection window is used:

f3 =
fx(R)
fx(W)

. (3.10)

12

Combining the three normalization methods f1, f2 and f3 with ex, ey and
ex+ey gives nine different feature types. Additionally the ratio of the horizontal
edges was used:

fr =
fx(R)

fx(R) + fy(R)
. (3.11)

This makes a total of 10 edge based features.

3.2.4 Scanline based Features

The scanline based features were initially targeted at QR codes, but turned out
to help for text detection, too. Starting from a border pixel of the detection
window, all pixels along a given scanline are walked through at the full image
resolution (Figure 3.5). The idea is to find the minimum or maximum segment
length in the binarized image. Binarization is done with a hysteresis to reduce
noise effects near the transitions.

The high and low threshold values are centered around the window mean
intensity, with a distance choosen by adaboost (between 0.5 and and 2 times
s(W), see Table 2.1). Surprisingly Adaboost used this feature differently than
expected, choosing a high hysteresis of 1.7s(W) and voting against text if the
maximum horizontal segment length inside the text area was below 70%.

Figure 3.5: 10 horizontal, 10 vertical and 2 diagonal scanlines were in the feature
pool. The intensity value is tracked and binarized (with hysteresis) along the
selected scanline. The result is the minimum or maximum distance between two
transitions.

3.3 Adaboost Training

Discrete Adaboost was used because of its simplicity, but with a modification
for asymmetric learning. Apart from that, the approach taken by Viola and
Jones (chapter 2) was closely followed.

Background windows were sampled randomly until the amount matched the
number of the foreground windows. It was was allowed (for the last stage) to
train with at least half as much background. The training stopped when there
was not enough background left in the training set.

3.3.1 Asymmetric Boosting

The modification to Discrete Adaboost is to update the weights for each boosting
round in an asymmetric way, as described in section 2.4.2. The implementation
is based on Asymmetric Adaboost by Viola and Jones[10], but applied to Discrete

13

Adaboost instead of Real Adaboost. While Real Adaboost might have worked
better, the results in section 6.3 show that Discrete Adaboost also improves
with this modification.

Before each boosting round the weights of the positive samples are multiplied
by a factor C while the weights of the negative samples are divided by the same
factor. After this the weights have to be normalized. C is defined by

C = exp(
k

T
) (3.12)

where T is the total number of boosting rounds and k a constant choosen by
the user. The special case k = 0 stands for the symmetric case. Good choices
for k seem to be 1 < k < 4. Note that the definition of k is slightly different
from the one in [10].

One problem that arises here is that the number of boosting rounds T has to
be known before the boosting starts. Because the performance on the validation
set is used as a stopping criterion, T depends on how well the selected features
work. But this depends again on the choice of C. To resolve this, each stage is
trained twice: once with T set to the number of boosting rounds of the previous
stage, and once again with T set to the result of the first training. This could be
repeated several times until T converges, but one iteration seems to be enough
for practical purposes.

3.4 Detector Setup

A minimum text window size of 40x20 pixels was used, with a scale factor of
1.1. The maximum size of the scanning window is limited only by the image
dimensions. When scanning at a given scale, a window step of 0.4 (horizontal)
and 0.2 (vertical) of the current window size in the respective directioin is used.

Those parameters were also used when scanning for false positives during
training.

3.5 Evaluation Method

The performance measure of the ICDAR text locating competition[3] was not
used because the problem of word segmentation was not solved during this thesis
(this was delegated to the OCR application). Instead the 2:1 detection windows
were directly evaluated (before clustering them). The OCR quality is considered
separately in section 4.4.

3.5.1 False Positive Rate

The false positive rate is simply measured by running the detector on the labeled
background regions in the testing set. The positive responses are counted and
divided by the total number of classified windows. This way, detections that
overlap with a text region are never counted as false positives.

3.5.2 Strict Hit Rate

The hit rate is more difficult to define. Two different evaluation methods were
used.

14

Table 3.1: Per-stage results of the trained classifier (testing set).
Stage false pos strict hit rate permissive hit rate new features
1 0.147 0.9982 1.0 1
2 0.025 0.9877 1.0 1
3 0.0085 0.9754 0.9965 2
4 0.0026 0.9684 0.9947 7
5 808e-6 0.9544 0.9947 6
6 312e-6 0.9430 0.9921 8
7 115e-6 0.9281 0.9886 18
8 45e-6 0.9140 0.9886 26
9 20e-6 0.9035 0.9877 300

Remember that the labeled rectangles were split into overlapping 2:1 win-
dows. The strict hit rate is calculated by running the classifier exactly centered
on each labeled window A. This is used during the training to tune the Adaboost
threshold and to check if the stage goal has been reached.

3.5.3 Permissive Hit Rate

While the strict hit rate can be evaluated quickly, it does not measure the
detection performance in a realistic setup. The first reason is that the final
classifier will be evaluated at a limited scanning resolution, and thus miss the
target slightly, depending on the scanning resolution. The second reason is that
it is not neccessary to get a positive response exactly where each label is, as
long as there are enough positive responses in the near neighbourhood.

To exclude those effects when comparing between different detectors, a sec-
ond measure called the permissive hit rate or just hit rate is used. With this
definition a hit for the ground-truth window A is declared if there is any pos-
itive window B detected with an intersection over union value (between the
rectangles corresponding to A and B) above a certain threshold:

|A ∩B|
|A ∪B|

> 0.4 (3.13)

The threshold was choosen less strict than the usual value of 0.5 in order to
exclude effects caused by missaligned labels. There are some extreme cases in
the dataset where the text is in the upper half of the window, and others where
it is in the lower half, because the original text was not exactly horizontal but
labeled with a single horizontal rectangle.

3.6 Results

The per-stage target for the strict hit rate on the validation set was 0.99 and
0.40 for the false positive rate. Table 3.1 shows the values that were actually
reached on the testing set. The first two stages go well beyond their goal using
only a single feature. The last stage did not quite reach the target any more
(the number of features was limited to 300 per stage).

15

The theoretical strict hit rate after 9 stages is 0.999 = 0.91. The actual values
were 0.96, 0.93 and 0.90 on the training, validation and testing set respectively.

It is worth noting that in the first four stages Adaboost selected only edge
based features (section 3.2.3). In the later stages all feature types were selected,
with a slight preference for the edge based ones.

The total runtime to produce the raw detection results on a typical 1600x1200
jpeg image is about 0.5 seconds (Pentium 4, 2.40GHz). The actual detection
part (after the integral images are calculated) takes 0.180 seconds.

Figure 3.6: ROC curves for six identical trainings. The curves are calculated by
adjusting the Adaboost threshold of the last stage. The noise comes from the
random sampling of background during the training process.

16

Figure 3.7: Complexity of the cascade for six identical trainings. For each stage
there is a point with the final false positive rate and the number of features used
(equal to the number of weak classifiers).

Figure 3.8: A typical raw detection result. Unless otherwise noted all text
results are from the best ROC curve in Figure 3.6 at a false positive rate of
5e-6.

17

Figure 3.9: This text is rotated by seven degrees but still detected well. The
rectangles are clustered less dense since this is slightly harder. Windows on
buildings are typical causes for false positives (surprisingly, trees are not).

Figure 3.10: The gradient in the upper left of the image, blur and the non-
uniform background cause problems.

18

Figure 3.11: Clean text like on this bookcover is located precisely. The number
at the bottom is not detected because there is no spacing to the barcode.

19

Chapter 4

Reading Text

4.1 Combining the Raw Detections

The raw detection windows are clustered, and isolated detections (being usually
false positives) are discarded. Two detection rectangles R1 and R2 where put
into the same cluster if their intersection-over-union measure was above a given
threshold:

|R1 ∩R2|
|R1 ∪R2|

> 0.4 (4.1)

The prior knowledge that text detections are more likely to cluster horizon-
tally than vertically was used by enlarging all raw detection windows horizon-
tally by 1/3 of their original width before clustering. This has the additional
advantage of including the first or last letter if they are missing.

Clusters with less than three rectangles are discarded. For each of the re-
maining clusters, the text height is estimated by the average logarithmic height
within the cluster:

ĥ = exp(
1
n

n∑
i=1

log(hi)) (4.2)

The final result for each cluster is the union of all rectangles, excluding
rectangles that are more than one scale step above the estimated height ĥ.
When all rectangles were included instead, the bounding box of the text was
often estimated too large.

4.2 Preprocessing

The detected regions were cut out and prepared for OCR. In order to keep the
processing time reasonable, the cropped image is scaled down to a maximum
height of 80 pixels. Contrast stretching is done to make the darkest pixel black
and the brightest pixel white. This is required for black-on-white detection
(described below) and for some of the binarization methods.

20

Figure 4.1: Two hard text areas from the ICDAR trial test set. Increasing the
number of false positives to 45e-6 allows to find more of this text.

Figure 4.2: Some typical false positives when running at 45e-6 false positives
(blue, background). If an image has false positives there are often many of
them together, increasing the required OCR processing time a lot. At 5e-6 false
positives (red) only the correct text is found.

21

4.2.1 Binarization

Most OCR programs accept greyscale images as input, however Chen and
Yuille[2] reported to get better results when using a slightly modified version
of Niblack binarization first. Many methods have been proposed and compared
for document binarization, for example in [20].

First note that most binarization methods assume a black on white text
and will give very poor results for white on black. Because of this, white on
black images must be detected and inverted before binarization. Since there
are usually more background pixels than text pixels, this can be done simply
by counting the pixels below the mean intensity. The image is inverted if more
than 50% of the pixels are below the mean intensity.

Most notable are Otsu’s global thresholding, Niblack’s adaptive thresholding
and Sauvola’s algorithm which is a variant of Niblack (details can be found
in [20]). Global thresholding might work well on scanned documents, but is of
little use when there is a gradient over the image, as in Figure 4.3.

Figure 4.3: Original image, global threshold (Otsu), local threshold (Sauvola).

Local thresholding works by choosing an individual threshold for each pixel,
depending on the pixels in the near neighbourhood. Niblack’s method calculates
the local threshold T from the local mean m and standard deviation s of the
pixels within a small rectangle:

T = m+ k · s (4.3)

The parameters are the constant k = −0.2 and the size of the local window
which is set to 3

4 of the detection window height. The method is said to be
somewhat robust to different window sizes, but the fact that we already have a
good estimate of the font size is still an advantage.

The most common problem with this Niblack binarization is that noise is
greatly amplified in empty regions of a document, resulting in lots of clutter.
Sauvola’s method solves this problem with a slightly modified formula:

T = m · (1− k · (1− s

R
)) (4.4)

with a different parameter k = 0.5 and s = 128 being the dynamic range of the
standard deviation over the whole image.

The local thresholding algorithms can be implemented efficiently using in-
tegral images as described in [21], and thus in principle the already calculated
integral images could be reused.

4.3 Evaluation

To measure the OCR performance, the ground truth and the OCR output for
each image were both treated as a “bag of words”. The assumption is that a
word has been located correctly if it was read correctly. Three properties were
calculated, summarized in Table 4.3. All of them have a maximum value of one.

22

Table 4.1: Word Evaluation Measures

correct words ratio of words in the ground truth with an exact match
in the OCR output

almost correct words ratio of words in the ground truth with an almost-exact
match in the output (Levenshtein distance smaller than
one third of the correct word length)

clutter ratio of words in the output that do not match any word
in the ground truth, according to either of the criteria
above

We have annotated the readable text in 88 challenging low-quality images
(640x480 with blur and noise) taken with a mobile phone. As an additional
dataset the words from the ICDAR train and trial test set were used, ignoring
the text location information.

4.4 Results

Three different OCR engines were tested, two of them free software and one
commercial: Tesseract1, GOCR2 and the ABBYY FineReader Engine3, called
FRE from now. The results can be seen in Figure 4.4. FRE did beat Tesseract
in terms of quality, however Tesseract was quite a bit faster.

gocr tesseract fre
0.0

0.2

0.4

0.6

0.8

1.0
correct words
almost correct words
clutter

gocr tesseract fre
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Comparing the different OCR engines after Niblack adaptive thresh-
olding, on the ICDAR datasets (left) and on the low-quality dataset (right). This
is the result of the complete system, meaning that a missed word can be either
unreadable or not located.

The results on the low quality dataset were quite poor. The most common
1http://code.google.com/p/tesseract-ocr/
2http://jocr.sourceforge.net/
3http://www.abbyy.com/

23

reason for this seems to be the low resolution or the heavy blur of the text
in most images. While some text was not found by the detector, much of the
cleanly located text could not be read anyway. The result in Figure 4.7 shows
that running the detector with a higher hitrate does not help much.

On the ICDAR dataset the text resolution was high in most images. The
problems were rather the special fonts, non-uniform backgrounds and single
letters or digits. The detector needs a minimum of about three letters, and its
training set did not include many special fonts. Training the detector with a
more challenging dataset did just make it more complex, without a significant
improvement of the precision.

The effect of binarization can be seen best with Tesseract in Figure 4.6.
Niblack’s method turned out to work best, possibly because the advantage of
Sauvola’s method would be mainly on empty regions that were rare within the
well-located text boxes. Both implementations had two additional hard (non-
adaptive) thresholds for very dark and very bright regions, suppressing the most
obvious noise.

Attempts to remove some connected components in the binarized image
(based on geometry constraints like the aspect ratio) did not work well; this was
probably handled better by the OCR engines already.

Figure 4.5: A sample image from the low quality dataset. With FRE only the
text “QZH-737695” was returned. The text “www schmdJer comm” could also
be read after scaling the image up.

Unlike Tesseract, with FRE the unbinarized greyscale images did work al-
most equally well as with Niblack binarization (see Figure 4.7). It could be that
FRE has improved since the results reported in [2]. Scaling the image up did
help sometimes, for example in Figure 4.5.

24

none otsu niblack sauvola
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 correct words
almost correct words

Figure 4.6: Results with Tesseract on the low quality dataset, using the greyscale
regions directly, using global thresholding (Otsu) and using an adaptive thresh-
old (Niblack and Sauvola).

nobin niblack nobin
upscale

nobin
hitmore

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.7: Comparing different methods on the low quality dataset with the
FineReader Engine: no binarization, Niblack binarization, scaling the images
up, and increasing the hitrate of the detector.

25

Chapter 5

Detecting Codes

QR codes are usually located by their special special finder pattern, for example
using the techniques in [22]. This chapter describes how localization can be
done using bit-pattern inside the code regions instead. The system is separate
from the text detection described in chapter 3, but compatible in the sense that
the same integral images are used. Datamatrix codes are also detected since
they have a very similar bit pattern. In contrast to the text detector, the QR
detector can find codes at any rotation.

Another possibility with the same basic approach would have been to train a
detector for the finder pattern or (even better) the entire corner area including
a part of the quiet zone. This has three disadvantages: rotation invariance
is lost, more training data is required and more windows have to be checked
in the detector. (To reliably hit the finder pattern using position-dependent
features the detection window would have to hit it with one-bit precision. Many
more windows would have to be tested than for only hitting the bit pattern
somewhere.)

5.1 The Dataset

QR codes have been labeled with two rectangles each: one around their finder
pattern (to have an estimate of the bit size) and one inside the central data
region. A fixed number of random squares of two times the marker size were
sampled from each central code region and used as positive windows for training
Adaboost (see Figure 5.1).

Figure 5.1: QR code labeling (left) and the random square windows used for
Adaboost training (right).

26

The dataset contains mainly testing images of free QR decoding libraries
and images with the qrcode tag downloaded from flickr1. The images from the
libraries did contain only the QR code without much background. Blurry, very
small and perspectivically distorted codes are included. In total 237 codes were
labeled (2280 positive windows), again split into three equally sized sets for
training, validation and testing.

The training background was the same as for text detection, with the addi-
tion of a few text areas, since text is a typical false positive when searching for
codes.

5.2 Boosting Trees

In contrast to text detection, decision trees did improve the performance for
code detection slightly. The comparision is in section 6.4.

In the Adaboost literature, decision trees are often choosen as weak classifiers
instead of simple feature treshold (called decision stumps). Decision trees are
trained on the weighted samples provided by Adaboost, trying to decrease the
weighted classification error somehow.

Each node of the tree uses a threshold on a single feature to make a decision.
Deep nodes in the tree usually see only a small percentage of the data. The leaves
of the tree stand for the final classification result, which is the output of the
weak classifier.

The decision trees were grown using the same split criterion as for Classifi-
cation and Regression Trees (CART) [17, 19]. Starting with an empty tree, the
next node to be added is always the one that gives the greatest reduce of the
so-called impurity.

There are several measures of the impurity of a node. Most common are
the missclassification error, the entropy and the Gini diversity index. The Gini
diversity index was used. Since it is problematic to find the best feature/thresh-
old combination with a very small fraction of the training data, only splits that
take into account at least 5 positive and 5 negative samples were considered.
The trees were grown until the maximum size of three nodes was reached. In
contrast to CART the trees were not pruned.

5.3 Training and Detector Setup

The same features as for text detection were used. For the intensity based
features (section 3.2.1) both absolute and non-absolute intensity differences were
considered.

The parameters were set up somewhat different than for text, as can be seen
in Table 5.1. Most notably the scale factor was higher and decision trees were
used as weak classifiers.

A square scanning window of a 5x5 resolution (for feature selection) was
used, with the detection starting at a minimum size of 8x8 pixels. The scale
factor was set to 1.25 (in contrast to 1.1 used with text)

1http://www.flickr.com/search/?q=qrcode

27

Table 5.1: Comparing the text and the code detector.
detecting text detecting codes

window resolution (features) 20x10 5x5
minimum window size 40x20 8x8
scale step 1.1 1.25
window step dx / dy 0.4 / 0.2 0.35 / 0.35
maximum tree depth 1 (stumps) 3

5.4 Combining and Preprocessing

The raw detection results were clustered using the same overlap criterion as
for text (equation 4.1). The detections squares were enlarged to twice their
size before the clustering step. This allows them to merge easier and at the
same time gives some spacing around the final combined result. This spacing is
needed to include all four corners of a code that is rotated by 45 degrees. The
final result is the union of the enlarged detections for each cluster (oversized
detections are not removed). A minimum of 5 detections is required per cluster.

The resulting regions are scaled up or down such that the code-bits are
roughly 6x6 pixels. The code-bit size can be estimated nicely using equation 4.2,
since the raw detections all include a more or less constant number of code-bits.
No binarization is done, only contrast stretching.

5.5 Results

The ROC and curve of the classifier can be seen in Figure 5.2. Since the last
stage has a pretty bad hitrate the second-last stage was used for the detection
results below.

The complexity curve is shown in Figure 5.3. It should be noted that an
about half as complex classifier can be trained by removing the hard images
from the training set.

Those curves look clearly worse than the results for text detection, but it
is possible to run the QR detector at a higher false positive rate because many
false positives tend to be isolated (see Figure 5.7).

Detecting QR codes by their bit pattern worked surprisingly well for clear
codes (eg. Figure 5.4). As long as no blur is involved, the bit pattern is distinc-
tive enough against most backgrounds, including text and vegetation.

The conceptual problem of this approach is that neither the information of
the finder pattern nor the quiet zone are used. For low resolution and blurred
QR codes those two properties seem to be the main distinctive patterns. The
bit pattern is no longer clearly binary and it cannot be distinguished alone (even
manually) from many of the background patterns. Often the code can still be
read using the redundant error correction information.

The reading performance was evaluated by passing the content of the detec-
tion rectangles to the qrcode library2.

2http://qrcode.sourceforge.jp/

28

0 2e-5 4e-5 6e-5 8e-5 1e-4
false positives

0.4

0.5

0.6

0.7

0.8

0.9

1.0

p
e
rm

is
si

v
e
 h

it
 r

a
te

stage08
stage09
stage10
stage11
stage12

Figure 5.2: ROC curves for three identical trainings, shown for the last few
stages. (The permissive hitrate was introduced in section 3.5.3.)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

false positives

10
0

10
1

10
2

10
3

fe
a
tu

re
s

Figure 5.3: Complexity of the cascade for three identical trainings.

29

Figure 5.4: A typical detection result at 10e-6 false positives. Blue: raw detec-
tion results; red: after combining.

Figure 5.5: The worst case of false positives was the special pattern on this
building in the left image. Clear QR codes are detected well and the false
positives are not a big problem.

Figure 5.6: Blurred or low-resolution codes are a conceptual problem with this
method. The bit pattern is no longer distinctive enough.

30

Figure 5.7: In vegetation false positives are quite common, but because they are
usually isolated they get filtered out by the minimum cluster size rule.

Table 5.2: Performance of QR code localization.
detector false pos codes read total time

qrcode only (no localization) (1.0) 178 23min
qrcode after localization 10e-6 136 7min
qrcode after localization 120e-6 151 9min

The number of codes that were readable are listed in Table 5.2. Qrcode
alone did read more codes but did so very slowly. There certainly is potential
to speed things up further; most time is still spent in qrcode and some time is
wasted by encoding the intermediate results as png images. The QR detector
itself is equally fast as the text detector.

While the localization did miss some readable codes, there were also cases
where the code could only be read after localization. On the other hand some-
times the code was clean and nicely extracted but it could not be read by qrcode
any more. So there certainly is room for improvement in the reading step.

31

Chapter 6

Discussion

6.1 Feature Pool Size

There is a trade-off between the number of features presented to Adaboost and
a reasonable training time. The main reason for the high feature count is the
variation of position and size of the block-based features.

For text detection initially a window size of 40x20 (44100 sub-rectangles)
was used, but the feature count had to be reduced by requiring either full width
or full height (Figure 6.1, 419 sub-rectangles). With this restriction a 20x10
window worked just as well in terms of precision. But at this lower size it was
feasible to include all rectangles with even x coordinates (Figure 3.2, 3025 sub-
rectangles). This final step reduced the false positives by factor two at a hitrate
of 94% for text detection.

Figure 6.1: Rectangluar regions in the restricted feature pool. Left: arbitrary
region (full feature pool); right: geometry restriction to reduce the number of
features.

6.2 Performance of the Features

The effect of the feature classes described in section 3.2 for text detection can
be seen in Figure 6.2. Each of them did lead to a clear precision improvement
together with a reduction of the classifier complexity at the same time.

6.2.1 Features based on Gradient Orientation

We also conducted experiments with features similar to the Sobel edge based
features described in section 3.2.3, but based on the gradient magnitude and
orientation.

32

0 1e-5 2e-5 3e-5 4e-5 5e-5 6e-5 7e-5 8e-5
false positives

0.75

0.80

0.85

0.90

0.95

1.00

p
e
rm

is
si

v
e
 h

it
 r

a
te

intensity only
adding variance
adding edges
adding scanlines

Figure 6.2: ROC curves of the detector when using different feature types. (The
geometry restriction in Figure 6.1 was enforced on the feature locations for faster
training.)

Figure 6.3: Complexity of the classifier when using different feature types.

33

Six gradient orientation bin images were calculated as proposed by Levi and
Weiss[23], each of them containing the gradient magnitude for some gradient
orientation range. The simple “Dominant Orientation Features” from [23] were
used, and some variants of it tried (eg. a weighted sum of three adjacent orien-
tation bins). Those features are similar to the horizontal to vertical edges ratio
in equation 3.11, but extended to six instead of two orientations.

A performance gain over the Sobel edge based features was visible but it
was small. The bigger issue was that calculating all the orientation bins and
their integral images took lots of processing time and memory in the detector.
Because of this the approach was not explored further.

6.3 Assymmetric Boosting

Asymmetric Adaboost as described in section 3.3.1 did give a small but clear
precision improvement and a noteable reduction of the classifier complexity.
The difference that it made on the final text detection training can be seen in
Figure 6.4.

The classifier got simpler especially in the early stages where it is really
needed for a fast execution time. The first stage consistently used only one
feature instead of two, and in the later stages the number of features was al-
most a factor two between the best results (note that the complexity plot is
logarithmic). It did make even more difference in earlier experiments.

6.4 Boosting Trees

In [16] it was concluded that trees were better suited for the face detection
problem. Other sources (eg. [18]) suggest that this depends a lot on the problem
and the boosting algorithm used.

The conclusion in this thesis is that boosting trees gave about equal perfor-
mance as boosting stumps. Trees gave slightly better performance only on the
code detection problem, which is shown in Figure 6.5. It is possible that trees
help only if the features are not good enough for simple thresholding.

6.5 Quantization effects

When scaling the 20x10 pixels detection window by a factor of 1.1 it is clear
that after rounding, some rectangular areas inside the window will grow while
others will not. In the report about the OpenCV implementation [16] it was
mentioned that there was a big improvement in precision after compensating
for the different area ratio caused by rounding errors.

While this is an implementation specific detail, it leaves the question open
how bad the remaining quantization effects are. This is important when detect-
ing objects at low resolution.

To find this out, the image in Figure 6.6 was scaled up or down using cubic
interpolation and an equally scaled feature was evaluated at fixed locations at
the different scales.

Figure 6.7 shows the result for the first intensity-based feature selected by
Adaboost for text detection. This feature computes the absolute intensity differ-

34

0 5e-6 1e-5 1.5e-5 2e-5
false positives

0.90

0.92

0.94

0.96

0.98

1.00

p
e
rm

is
si

v
e
 h

it
 r

a
te

asymmetric
symmetric

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

false positives

10
0

10
1

10
2

10
3

fe
a
tu

re
s

asymmetric
symmetric

Figure 6.4: ROC and complexity curves of the final text detector with and
without asymmetric bossting. The training noise is high but the difference is
still clearly visible.

35

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

false positives

10
0

10
1

10
2

10
3

10
4

fe
a
tu

re
s

final qr detector
without trees
without scanline features

0 1e-6 2e-6 3e-6 4e-6 5e-6
false positives

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

p
e
rm

is
si

v
e
 h

it
 r

a
te

final qr detector
without trees
without scanline features

Figure 6.5: ROC and complexity curves of the final QR code detector (last
stage only) when boosting trees and when boosting stumps, and also without
the scanline based features.

Figure 6.6: The image and feature locations choosen for the scale test. At the
smallest resolution, the window has its original size of 20x10 pixels.

36

ence between a centered 20x6 block and the whole 20x10 window. This feature
averages relatively large regions, but Adaboost already has to cope with a lot of
quantization noise. Still the value inside the text window stays clearly above the
others. Smaller blocks are choosen only at the later stage and can have much
more noise.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log(scale factor)

0.0

0.1

0.2

0.3

0.4

0.5

fe
a
tu

re
 v

a
lu

e

Figure 6.7: The responses of an intensity-based feature at different window
scales. Each curve corresponds to a window in Figure 6.6. The image was scaled
to match the window size. The leftmost values are at the original window size
(scale factor 1.0) and the vertical bar marks the original image resolution.

6.6 Scaling the Edge based Features

Using the same test as in the previous section, it can be judged how scale-
invariant the edge-based features really are. As expected the scale invariance
is best when only the ratio between the number of edges is compared as in
Figure 6.8.

When the number of edges are really “counted”, as in the feature shown
in Figure 6.9, there is a clear depencency on the scale. This is also expected
since at a low scale few details are visible and because the number of visible
edges is smaller. Because of noise within the image (and contrast normalization
amplifies it) the number of edges increases with the scale even on blank regions
of the image.

In fact it may be suspected that this feature type mostly just measures the
scale of the detection window. There were few text regions in the training set at
the lowest detector scale, and of course the big bulk of the training background
windows gets sampled from the smallest scale.

To check this an additional feature that measures nothing but the detection
window scale was added into the feature pool. It was never selected by Adaboost.
It can be concluded that this feature measures at least some useful property in
addition to the scale.

37

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log(scale factor)

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

fe
a
tu

re
 v

a
lu

e

Figure 6.8: The scale responses of the first feature selected by Adaboost for text
detection (with threshold 1.04). This feature compares the number of vertical
edges inside a horizontal stripe with the same statistic inside the whole window
(using equation 3.10).

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
log(scale factor)

0

10

20

30

40

50

60

70

80

90

fe
a
tu

re
 v

a
lu

e

Figure 6.9: The scale responses of a feature “counting” the vertical edges inside
a horizontal stripe (using equation 3.9). (The values still grow when the original
image is scaled up because the smooting done by the Sobel operator still hides
some edges.)

38

6.7 Different Dataset

In addition to the dataset described in section 3.1 a more challenging superset
was tried. This included artistic fonts, some handwritten letters, extreme spac-
ing and three dimensional advertisment signs. Additionally more background
was labeled selectively, including only regions with false positives of the final
cascade.

As it would be expected, the performance on this dataset is worse because
the testing set was more challenging. Much more features were evaluated, also in
the early stages. The cascade trained on the simpler dataset seemed to perform
about equally well on difficult images.

39

Chapter 7

Conclusions and Outlook

A system for detecting and reading text in natural scenes has been implemented.
Clear horizontal text can be detected and read reliably with very few false
positives.

However often the text in natural scenes is not clean in some sense. It may
be on uneven background, not evenly illuminated, blurred, perspectivically dis-
torted or written with artistic fonts. Some of this text can still be detected, but
most of it is not readable with a modern commercial OCR program. Cleaning
up and reading difficult text regions is an active research topic, for example
in [6].

The system developed during this thesis can be trained to find other“objects”
appart from text. This was demonstrated by locating two dimensional barcodes
by their bit pattern. Clear QR and Datamatrix codes (without much blur) can
be found reliably and their bit size is estimated at the same time.

7.1 Further Work

The text detection results could be exploited in more sophisticated ways and
used as prior knowledge for binarization or OCR. In [24] an expectation maxi-
mization algorithm was used for clustering.

Going one step further, the shape of the text line could be estimated and
the text isolated from the background using only the detection results. For
example there are sometimes bars near the extracted text that are much darker
or brighter than both the text and its background, eg. a sign against the bright
sky. Those bars are rarely part of a detection window, but if the text is slightly
tilted they are included in the result. The extreme intensities confuse both the
adaptive binarization and the OCR engine.

More sophisticated binarization methods that can adapt to different back-
ground patterns should be tested. Also, color information could be used; while
the background pattern can have all possible color, the color of the font is often
constant.

40

Bibliography

[1] P. Viola and M. Jones. Rapid object detection using a boosted cascade of
simple features. In CVPR, 2001.

[2] X. Chen and A. L. Yuille Detecting and Reading Text in Natural Scenes.
In CVPR, 2004.

[3] Simon M. Lucas. ICDAR 2005 text locating competition results. Proceed-
ings of International Conference on Document Analysis and Recognition
(ICDAR), 2005.

[4] Keechul Jung and Kwang In Kim and Anil K. Jain. Text information extrac-
tion in images and video: a survey Pattern Recognition, 37(5) pp. 977-997,
2004.

[5] Ching-Tung Wu. Embedded-Text Detection and Its Application to Anti-
Spam Filtering. Master Thesis at the University of California, Santa Bar-
bara, 2005.

[6] Céline Mancas-Thillou, Bernard Gosselin. Natural Scene Text Understand-
ing. Vision Systems: Segmentation and Pattern Recognition, ISBN 978-3-
902613-05-9, pp, 307-333, 2007.

[7] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. European Conference on
Computational Learning Theory, pp. 23-37, 1995.

[8] Robert E. Schapire and Yoav Freund and Peter Bartlett and Wee Sun Lee.
Boosting the margin: a new explanation for the effectiveness of voting
methods. Proc. 14th International Conference on Machine Learning, 1997.

[9] Viktor Peters. Effizientes Training ansichtsbasierter Gesichtsdetektoren.
Diplomarbeit im Fach Naturwissenschaftliche Informatik: Technische
Fakultät Universität Bielefeld, 2006.

[10] P. Viola and M. Jones. Fast and Robust Classifcation using Asymmetric
AdaBoost and a Detector Cascade. In Proceedings NIPS01, 2001.

[11] Hamed Masnadi-Shirazi, Nuno Vasconcelos. Asymmetric boosting. ICML
2007, 609-619.

[12] R. E. Schapire and Y. Singer. Improved Boosting Algorithms Using
Confidence-rated Predictions. Machine Learning, 37, 1999, 297-336.

41

[13] Yoav Freund. An Adaptive Version of the Boost By Majority Algorithm
Proceedings of the Workshop on Computational Learning Theory, 1999.

[14] B. Wu, H. Ai, C. Huang, and S. Lao. Fast Rotation Invariant Multi-View
Face Detection Based on Real AdaBoost. Proceedings Sixth International
Conference on Automatic Face and Gesture Recognition, pp. 79-84, 2004.

[15] J. Friedman, T. Hastie, R. Tibshirani. Additive logistic regression: a sta-
tistical view of boosting. Annals of Statistics 28, 337–307, 2000.

[16] Rainer Lienhart, Alexander Kuranov, Vadim Pisarevsky. Empirical Analy-
sis of Detection Cascades of Boosted Classifiers for Rapid Object Detection.
Intel Technical Report MRL-TR-July02-01, 2002.

[17] Chong Yee Seng. Classification and Regression Trees (CART) for Spam
Prediction. Computational Intelligence: Methods and Applications – As-
signment 2, 2006.

[18] S. Charles Brubaker, Jianxin Wu, Jie Sun, Matthew D. Mullin, James M.
Rehg. On the Design of Cascades of Boosted Ensembles for Face Detection.
International Journal of Computer Vision, Special Issue on Learning for
Vision, 77(1-3), 2008, pp.65-86.

[19] Trevor Hastie, Robert Tibshirani, Jerome Friedman. The Elements of Sta-
tistical Learning. Springer Series in Statistics, ISBN 0-387-95284-5, 2001.

[20] Shijian Lu, Chew Lim Tan. Binarization of Badly Illuminated Document
Images through Shading Estimation and Compensation. Document Analy-
sis and Recognition, ICDAR 2007, pp 312-316.

[21] Faisal Shafaita, Daniel Keysersa, Thomas M. Breuelb. Efficient Implemen-
tation of Local Adaptive Thresholding Techniques Using Integral Images.
Document Recognition and Retrieval XV, San Jose.

[22] Eisaku Ohbuchi, Hiroshi Hanaizumi, Lim Ah Hock. Barcode readers using
the camera device in mobile phones Proceedings of the 2004 International
Conference on Cyberworlds, pp. 260-265.

[23] Kobi Levi and Yair Weiss. Learning Object Detection from a Small Number
of Examples: the Importance of Good Features. In CVPR, 2004.

[24] Vincent Vanhoucke, S. Burak Gokturk. Reading text in consumer digital
photographs. Document Recognition and Retrieval XIV, 2007.

42

Appendix A

Using the Codebase

The classifier is written in C++ and supported by various Python scripts. All
the code is in the classifier directory. Table A.1 lists the three main scripts.
There are a few more specialized scripts. Most of them have a built-in help func-
tion that describes their purpose and usage when started without arguments.

A.1 Creating a Dataset

To generate a dataset, background and foreground labels in the .idl format have
to be given to the create_dataset.py script. This file format that was used
because it is the output format of the idledit tool developed at the institute
by Bastian Leibe. Multiple .idl files can be combined using idlmix.py. The
generated dataset directory contains a cropped version of all required images
and the new labels (eg. all text detection rectangles have a fixed aspect ratio).

Table A.1: The three central scripts.

Script Function
create_dataset.py splits the labeled text or code regions into detection win-

dows and randomly distributes the data into training,
validation and testing sets; the result is a self-contained
dataset directory

traincascade.py trains a classifier for the given dataset; for each stage,
the detector binary and the evaluation results are saved
into the training directory

runcascade.py runs the trained classifier on a list of images, invoking
external programs for binarization, OCR or QR decod-
ing if requested

43

A.2 Training the Cascade

The training process will need about 2GB of memory (mainly depending on the
number of positive windows). It has to be started within a Subversion sandbox.
When running several trainings in parallel each training needs its own sand-
box. The Subversion revision and any local modifications will be saved into the
training directory.

The configuration file parameter.py can be edited to change most settings
for the training and the evaluation; the parameters are documented within this
file. The training process itself is started with the traincascade.py script. It
is good practice to append a number to the name of the output directory; ROC
curves will be plotted with the same color if only this number is different.

For each stage, a subdirectory is created in the training directory where all
stage-specific results are stored, including a compiled detect binary as well as
all the evaluation results (evalcascade.py gets invoked for each stage during
the training).

After the training is finished, the ROC and complexity curves can be plotted
and compared using either plotrocs_gnuplot.py or plotrocs_pylab.py.

A.3 Running the Detector

The runcascade.py script takes a training directory and a list of images as in-
put. Without parameters, runcascade.py will produce a file called output.idl
with the raw detection results. If OCR is requested the cropped and binarized
images are also saved into the output directory and the file output.idl will
contain the combined results instead.

When running the detector a suitable operating point on the ROC curve
should be choosen. This is done with the --thresh=value option. The value
corresponding to each (false positive, hitrate) combination can be found in the
last column of the file traindir/laststage/roc_test.dat. To get a higher
hitrate it is also possible to use an earlier stage of the cascade; just give the
stage subdirectory instead of the training directory.

For the final OCR or QR decoding step external programs are called by
detect.py on the cropped images in the output directory. For QR decoding
the path to qrcode1 may have to be adapted in the file decode.py. For OCR
with gocr or tesseract binarization with the -b switch is recommended, which
needs the gamera2 framework installed. The results are saved into text files for
each image in the output directory.

Sometimes it may be neccessary to recompile the detect binary after the
training, eg. for a different CPU architecture or with code changes that do not
require a new training. This can be done with the following command:
scons stagedir=traindir/stage09 traindir/stage09/detect
substituting the number of the last stage. For predictable results the source code
and the relevant settings in parameters.py should match those used during
training.

1http://qrcode.sourceforge.jp/
2http://ldp.library.jhu.edu/vhost-base/gamera (svn trunk r1043 was used)

44

A.4 Datasets

The dataset diretory for the final text training is in data/datasets/flickr2
and the one for the QR and datamatrix training in data/datasets/qrdm. While
they are self-contained, the images inside were automatically cropped. The
original labels can be found fg_orig.idl and bg_orig.idl inside each dataset
directory. Those files contain references to the original images in data/images,
data/flickr, data/codes and data/codetextbg.

The trained text detector is in classifier/ffinal1. To recompile the de-
tector binary in ffinal1/stage09 the classifier directory must be reverted
to the svn revision number in the file classifier/ffinal1/info.txt (because
of a last-minute bugfix in classifier/feature_sobel.hpp which turned out
to have no influence on performance). The trained QR code detector is in
classifier/qrdm_final9.

45

Appendix B

More Text Detection
Results

The red labels shown below are all from the same detector as in Section 3.6
running at 5e-6 false positives per window. The blue labels (if given) are drawn
behind the red ones and come from the same detector at 45e-6 false positives.

46

47

48

49

